ATTESTATION OF CONFORMITY

Issued to:

Ningbo Sunways Technologies Co., Ltd. No. 1, Second Road, Green Industrial Zone, Chongshou Town, 315334 Cixi, Ningbo, Zhejiang, PEOPLE'S REPUBLIC OF CHINA

For the product:

Grid connected PV-inverter

Trade name:

sunways

Type/Model:

Iodel: STS-1KTL-S, STS-1.5KTL-S, STS-2KTL-S, STS-2.5KTL-S, STS-3KTL-S, STS-1KTL-S-P, STS-1.5KTL-S-P, STS-2KTL-S-P, STS-2.5KTL-S-P, STS-3KTL-S-P

Ratings: See Annex

Manufactured by: Ningbo Sunways Technologies Co., Ltd. No. 1, Second Road, Green Industrial Zone, Chongshou Town, 315334 Cixi, Ningbo, Zhejiang, PEOPLE'S REPUBLIC OF CHINA

Requirements:

Engineering Recommendation G98 Issue 1 - Amendment 7: 2022

This Attestation is granted on account of an examination by DEKRA, the results of which are laid down in a confidential file no. 6166265.50

The examination has been carried out on one single specimen or several specimens of the product, submitted by the manufacturer. The Attestation does not include an assessment of the manufacturer's production. Conformity of his production with the specimen tested by DEKRA is not the responsibility of DEKRA.

Arnhem, 28 September 2023

Number: 6166265.01AOC

DEKRA Testing and Certification (Shanghai) Ltd.

Kreny Lin

Kreny Lin Certification Manager

 $\ensuremath{\mathbb{C}}$ Integral publication of this attestation and adjoining reports is allowed

Page 1 of 14

DEKRA Testing and Certification (Shanghai) Ltd. 3F #250 Jiangchangsan Road Shibei Hi-Tech Park, 200436 Jing'an District, Shanghai, China T +86 21 6056 7666 F +86 21 6056 7555 www.dekra-product-safety.com

Ratings of the test product: Operating temperature range: - 30°C to + 60°C Protective class: I Ingress protection rating: IP65 Power factor range (adjustable): 0.8 leading...0.8 lagging

STS-1KTL-S

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 12.5 A, Isc PV: 15 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 4.8 A, rated current: 4.4 A, Rated Power: 1000 W, Rated Apparent Power: 1000 VA, Max. Apparent Power: 1100 VA

STS-1.5KTL-S

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 12.5 A, Isc PV: 15 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 7.2 A, rated current: 6.5 A, Rated Power: 1500 W, Rated Apparent Power: 1500 VA, Max. Apparent Power: 1650 VA

STS-2KTL-S

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 12.5 A, Isc PV: 15 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 9.6 A, rated current: 8.7 A, Rated Power: 2000 W, Rated Apparent Power: 2000 VA, Max. Apparent Power: 2200 VA

STS-2.5KTL-S

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 12.5 A, Isc PV: 15 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 12 A, rated current: 10.9 A, Rated Power: 2500 W, Rated Apparent Power: 2500 VA, Max. Apparent Power: 2750 VA

STS-3KTL-S

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 12.5 A, Isc PV: 15 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 14.4 A, rated current: 13.1 A, Rated Power: 3000 W, Rated Apparent Power: 3000 VA, Max. Apparent Power: 3300 VA

STS-1KTL-S-P

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 16 A, Isc PV: 20 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 4.8 A, rated current: 4.4 A, Rated Power: 1000 W, Rated Apparent Power: 1000 VA, Max. Apparent Power: 1100 VA

STS-1.5KTL-S-P

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 16 A, Isc PV: 20 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 7.2 A, rated current: 6.5 A, Rated Power: 1500 W, Rated Apparent Power: 1500 VA, Max. Apparent Power: 1650 VA

STS-2KTL-S-P

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 16 A, Isc PV: 20 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 9.6 A, rated current: 8.7 A, Rated Power: 2000 W, Rated Apparent Power: 2000 VA, Max. Apparent Power: 2200 VA

STS-2.5KTL-S-P

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 16 A, Isc PV: 20 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 12 A, rated current: 10.9 A, Rated Power: 2500 W, Rated Apparent Power: 2500 VA, Max. Apparent Power: 2750 VA

STS-3KTL-S-P

PV Input: Max. 500 Vdc, MPPT Voltage Range: 80 ~ 450 Vdc, Max. Current: 16 A, Isc PV: 20 A AC Output: 220 / 230 Vac, 50 / 60 Hz, Max. current: 14.4 A, rated current: 13.1 A, Rated Power: 3000 W, Rated Apparent Power: 3000 VA, Max. Apparent Power: 3300 VA

1. Operating Range:

G98/1-7 Form C: Type Test Verification Report

Extract form test report number.:

	arried out as specified			
	e test should be indicat lo disconnection occur		(right hand side), for e lence is preferred.	example with the
Model: STS-3KTL-S				
Test 1:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (seconds)
195.61	47.00	2750	0.993	28
Test 2:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
195.62	47.50	2752	0.993	98.4
Test 3:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
253.04	51.50	2992	0.995	90.7
Test 4:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
253.08	52.00	2994	0.995	17.5
Test 5:				
Measured Voltage (V)	Measured Frequency (Hz)	Measured Power (W)	Measured Power factor	Test Time (Minutes)
230.56	50.00	2987	0.996	93.4
Test 6:				
Measured Voltage (V)	Ramp range	Test frequency ramp	Test Duration	Confirm no trip
195.5	47.0 Hz to 52.0 Hz	+1 Hzs ⁻¹	5.0s	No trip
253.0	52.0 Hz to 49.0 Hz	-1 Hzs ⁻¹	3.0s	No trip

6166265.50

Ρ

2. Power	Quality – Harm	onics:				Р
with a fixe Capacity .	d source of ener	gy at two power	[·] levels a) betwe	en 45 and 55%	hosen test should and b) at 100% o t er connected) or	f Registered
Model: ST	S-1KTL-S					
Micro-ger	nerator tested to	BS EN 61000-	3-2			
Micro-ger	nerator rating pe	er phase (rpp)		1	kW	
measuren harmonics	se Micro-genera nents are identic are not identica his section with t	al for all three pl I for each phase	hases. If the e, please	Single phase F	PV inverter	
Harmonic	At 45-55% of Capa	-		legistered acity		
	Measured Value MV in Amps	loity	Measured Value MV in Amps		Limit in BS EN 61000-3-2 in Amps	Higher limit for odd harmonics 21 and above
2	0.0209	-	0.0363	-	1.080	
3	0.0394	-	0.0790	-	2.300	
4	0.0016	-	0.0029	-	0.430	
5	0.0158	-	0.0322	-	1.140	
6	0.0009	-	0.0008	-	0.300	
7	0.0141	-	0.0285	-	0.770	
8	0.0007	-	0.0006	-	0.230	
9	0.0122	-	0.0247	-	0.400	
10	0.0010	-	0.0010	-	0.184	
11	0.0100	-	0.0203	-	0.330	
12	0.0009	-	0.0010	-	0.153	
13	0.0083	-	0.0168	-	0.210	
14	0.0009	-	0.0010	-	0.131	
15	0.0069	-	0.0142	-	0.150	
16	0.0009	-	0.0012	-	0.115	
17	0.0048	-	0.0098	-	0.132	
18	0.0008	-	0.0012	-	0.102	
19	0.0028	-	0.0059	-	0.118	
20	0.0005	-	0.0009	-	0.092	
21	0.0018	-	0.0037	-	0.107	0.160
22	0.0005	-	0.0009	-	0.084	
23	0.0013	-	0.0029	-	0.098	0.147
24	0.0005	-	0.0008	-	0.077	
25	0.0008	-	0.0018	-	0.090	0.135
26	0.0005	-	0.0009	-	0.071	
27	0.0006	-	0.0013	-	0.083	0.124

0.0003	-	0.0006	-	0.066	
0.0008	-	0.0017	-	0.078	0.117
0.0003	-	0.0006	-	0.061	
0.0008	-	0.0017	-	0.073	0.109
0.0003	-	0.0006	-	0.058	
0.0010	-	0.0020	-	0.068	0.102
0.0003	-	0.0007	-	0.054	
0.0010	-	0.0022	-	0.064	0.096
0.0003	-	0.0006	-	0.051	
0.0010	-	0.0022	-	0.061	0.091
0.0002	-	0.0004	-	0.048	
0.0013	-	0.0026	-	0.058	0.087
0.0004	-	0.0005	-	0.046	
	0.0008 0.0003 0.0008 0.0003 0.0010 0.0003 0.0010 0.0003 0.0010 0.0002 0.0013	0.0008 - 0.0003 - 0.0008 - 0.0003 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0010 - 0.0013 -	0.0008 - 0.0017 0.0003 - 0.0006 0.0008 - 0.0017 0.0003 - 0.0017 0.0003 - 0.0006 0.0010 - 0.0020 0.0010 - 0.0007 0.0010 - 0.0022 0.0003 - 0.0006 0.0010 - 0.0022 0.0010 - 0.0022 0.0010 - 0.0022 0.0010 - 0.0022 0.0010 - 0.0022 0.0013 - 0.0026	0.0008 - 0.0017 - 0.0003 - 0.0006 - 0.0008 - 0.0017 - 0.0003 - 0.0017 - 0.0003 - 0.0006 - 0.0010 - 0.0020 - 0.0010 - 0.0007 - 0.0010 - 0.0022 - 0.0010 - 0.0022 - 0.0010 - 0.0022 - 0.0010 - 0.0022 - 0.0010 - 0.0022 - 0.0010 - 0.0022 - 0.0010 - 0.0026 -	0.0000 - 0.0017 - 0.078 0.0003 - 0.0006 - 0.061 0.0008 - 0.0017 - 0.073 0.0008 - 0.0017 - 0.073 0.0003 - 0.0006 - 0.058 0.0010 - 0.0020 - 0.068 0.0010 - 0.0007 - 0.054 0.0010 - 0.0022 - 0.064 0.0010 - 0.0022 - 0.064 0.0010 - 0.0022 - 0.061 0.0010 - 0.0022 - 0.061 0.0010 - 0.0022 - 0.061 0.0010 - 0.0022 - 0.048 0.0013 - 0.0026 - 0.058

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

Model: ST	S-3KTL-S						
Micro-ger	nerator tested to	BS EN 61000-	3-2				
Micro-ger	nerator rating pe	er phase (rpp)	3		kW		
measurem harmonics	se Micro-gener a nents are identic are not identica his section with	al for all three p Il for each phase the results for ea	hases. If the e, please ach phase.	Single phase F	PV invert	er	
Harmonic	At 45-55% of			egistered			
	Capa Measured Value MV in Amps	аспу	Capa Measured Value MV in Amps	acity	Limit ir EN 610 in Amp	000-3-2	Higher limit for odd harmonics 21 and above
2	0.0377	-	0.0748	-	1.(080	
3	0.1215	-	0.1324	-	2.3	300	
4	0.0046	-	0.0084	-	0.4	430	
5	0.0460	-	0.0911	-	1.1	140	
6	0.0013	-	0.0034	-	0.3	300	
7	0.0407	-	0.0722	-	0.7	770	
8	0.0022	-	0.0059	-	0.2	230	
9	0.0357	-	0.0682	-	0.4	400	
10	0.0015	-	0.0032	-	0.1	184	
11	0.0285	-	0.0598	-	0.3	330	
12	0.0017	-	0.0038	-	0.1	153	
13	0.0243	-	0.0537	-	0.2	210	
14	0.0016	-	0.0025	-	0.1	131	

15	0.0195	-	0.0423	-	0.150	
16	0.0016	-	0.0026	-	0.115	
17	0.0133	-	0.0334	-	0.132	
18	0.0013	-	0.0021	-	0.102	
19	0.0076	-	0.0252	-	0.118	
20	0.0016	-	0.0026	-	0.092	
21	0.0052	-	0.0154	-	0.107	0.160
22	0.0013	-	0.0016	-	0.084	
23	0.0041	-	0.0106	-	0.098	0.147
24	0.0011	-	0.0014	-	0.077	
25	0.0030	-	0.0069	-	0.090	0.135
26	0.0012	-	0.0011	-	0.071	
27	0.0020	-	0.0041	-	0.083	0.124
28	0.0012	-	0.0011	-	0.066	
29	0.0020	-	0.0044	-	0.078	0.117
30	0.0011	-	0.0014	-	0.061	
31	0.0028	-	0.0028	-	0.073	0.109
32	0.0008	-	0.0014	-	0.058	
33	0.0027	-	0.0030	-	0.068	0.102
34	0.0009	-	0.0012	-	0.054	
35	0.0031	-	0.0025	-	0.064	0.096
36	0.0008	-	0.0013	-	0.051	
37	0.0029	-	0.0026	-	0.061	0.091
38	0.0006	-	0.0014	-	0.048	
39	0.0037	-	0.0032	-	0.058	0.087
40	0.0007	-	0.0016	-	0.046	

Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.

These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (**Inverter** connected) or Annex A2 A.2.3.3 (Synchronous).

The standard test impedance is 0.4Ω for a single phase **Micro-generating Plant** (and for a two phase unit in a three phase system) and 0.24Ω for a three phase **Micro-generating Plant** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above):

d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

Test start date	е	2023-08-04 Test end date 2023-08-04						
Test location	location No.99, Hongye Road, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China						hina	
Model:	STS-3KTI	L-S						
			S	ingle Phase				
	Starting Stopping Running						ning	
	d(max)						Plt	

	d(max)	d(c)	d(t)		d(max)	d(c)	d(t)	Pst		P _{lt} 2 hours
Measured Values at test impedance	0.26	0.23	0		1.19	0.35	0	0.14	ł	0.12
Normalised to standard impedance	0.26	0.23	0		1.19	0.35	0	0.14	ļ	0.12
Normalised to required maximum impedance	N/A	N/A	N/A		N/A	N/A	N/A	N/A		N/A
Limits set under BS EN 61000- 3-11	4%	3.3%	3.3%	, D	4%	3.3%	3.3%	1.0		0.65
Test Impedance	R	0.4		Ω		XI	0.25		Ω	
Standard Impedance	R	0.24 * 0.4 ^		Ω		XI	0.15 * 0.25 ^		Ω	
Maximum Impedance	R	N/A #		Ω		XI	N/A #		Ω	

*Applies to three phase and split single phase **Micro-generators**. Delete as appropriate.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. Delete as appropriate.

Ρ

4. Power quality – DC injection:

This test should be carried out in accordance with A 1.3.4 as applicable.

The % **DC** injection ("as % of rated AC current" below) is calculated as follows:

% **DC** injection = Recorded **DC** value in Amps / base current

where the base current is the **Registered Capacity** (W) / 230 V. The % **DC** injection should not be greater than 0.25%.

Model: STS-3KTL-S

Single Phase									
Test power level 20% 50% 75% 100%									
Recorded DC injection value in Amps	0.0211	0.0165	0.0151	0.0121					
as % of rated AC current	0.162%	0.127%	0.116%	0.093%					
Limit	0.25%	0.25%	0.25%	0.25%					

Model: STS-1KTL-S										
	Single Phase									
Test power level	20%	50%	75%	100%						
Recorded DC injection value in Amps	0.007	0.006	0.008	0.008						
as % of rated AC current	as % of rated AC current 0.161% 0.140% 0.186% 0.186%									
Limit	0.25%	0.25%	0.25%	0.25%						

5. Power Factor:

This test shall be carried out in accordance with A.1.3.2 and A.2.3.2 at three voltage levels and at **Registered Capacity** and the measured **Power Factor** must be greater than 0.95 to pass. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test.

Model: STS-3KTL-S			
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	0.997	0.998	0.999
Power Factor Limit	>0.95	>0.95	>0.95
Model: STS-1KTL-S			
Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	0.999	0.999	0.999
Power Factor Limit	>0.95	>0.95	>0.95

Ρ

6. Protection – Frequency tests:

These tests should be carried out in accordance with Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous). For trip tests, frequency and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: STS-3KTL-S

Function	Setting		Trip test		"No trip tests"	"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip		
U/F stage 1	47.5 Hz	20 s	47.49 Hz	20.024 s	47.7 Hz 30 s	No trip		
U/F stage 2	47.0 Hz	0.5 s	47.00 Hz	0.539 s	47.2 Hz 19.5 s	No trip		
					46.8 Hz 0.45 s	No trip		
O/F	52.0 Hz	0.5 s	52.02 Hz	0.525 s	51.8 Hz 120.0 s	No trip		
					52.2 Hz 0.45 s	No trip		

Note: For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests:

These tests should be carried out in accordance with Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous). For trip tests, voltage and time delay should be stated. For "no trip tests", "no trip" can be stated.

Model: STS-3KTL-S

Single Phase						
Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	182.6 V	2.569 s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2 V)	1.0 s	262.8 V	1.045 s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7 V)	0.5 s	273.4 V	0.546 s	269.7 V 0.95 s	No trip
					277.7 V 0.45 s	No trip

8. Protection – Loss of Mains test:

For PV **Inverters** shall be tested in accordance with BS EN 62116. Other **Micro-generators** should be tested in accordance with A.2.2.4 at 10%, 55% and 100% of rated power. For test condition A, EUT output = 100 % P_n , test condition B, EUT output = 50 % to 66 % P_n , and test

For test condition A, EUT output = 100 % P_n, test condition B, EUT output = 50 % to 66 % P_n, and test condition C, EUT output = 25 % to 33 % P_n.

Model: STS-3KTL-S

For **Inverter**s tested to BS EN 62116 the following sub set of tests should be recorded in the following table.

Test Power	33%	66%	100%	33%	66%	100%
and	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
imbalance	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time. Limit is 0.5s	0.188 s	0.194 s	0.228 s	0.192 s	0.196 s	0.216 s

8. Protection – Frequency change, Vector Shift Stability test:

Ρ

Ρ

Ρ

This test should be carried out in accordance with EREC G98 Annex A1 A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip under positive / negative vector shift.

Model: STS-3KTL-S

	Start Frequency	Change	Confirm no trip
Positive Vector Shift	49.0 Hz	+50 degrees	No trip
Negative Vector Shift	50.0 Hz	-50 degrees	No trip

8. Protection – Frequency change, RoCoF Stability test:

The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (**Inverter** connected) or Annex A2 A.2.2.6 (Synchronous). Confirmation is required that the **Micro-generating Plant** does not trip for the duration of the ramp up and ramp down test.

Model: STS-3KTL-S

Ramp range	Test frequency ramp:	Test Duration	Confirm no trip
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹	2.1 s	No trip
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹	2.1 s	No trip

Ρ

This test should be carried out in accordance with A.1.2.9. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. The measurement tolerances are contained in A.1.2.9.

Model: STS-3KTL-S

Alternatively, simulation results should be noted below:

Alternatively, sinulation res		Died below.			
Test sequence at Registered Capacity >80%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	2995.97	50.00	-		-
Step b) 50.45 Hz ±0.05 Hz	2965.23	50.45	9.76		-
Step c) 50.70 Hz ±0.10 Hz	2815.00	50.70	9.95	Photovoltaic	-
Step d) 51.15 Hz ±0.05 Hz	2544.43	51.15	9.97	array	-
Step e) 50.70 Hz ±0.10 Hz	2815.34	50.70	9.97	simulator	-
Step f) 50.45 Hz ±0.05 Hz	2965.89	50.45	9.97		-
Step g) 50.00 Hz ±0.01 Hz	2991.16	50.00	-	_	
Test sequence at Registered Capacity 40- 60%	Measured Active Power Output (W)	Frequency (Hz)	Calculated droop (%)	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1494.20	50.00	-		-
Step b) 50.45 Hz ±0.05 Hz	1478.30	50.45	9.43		-
Step c) 50.70 Hz ±0.10 Hz	1402.96	50.70	9.86	Photovoltaic	-
Step d) 51.15 Hz ±0.05 Hz	1265.85	51.15	9.85	array	-
Step e) 50.70 Hz ±0.10 Hz	1403.91	50.70	9.97	simulator	-
			a a =	1	
Step f) 50.45 Hz ±0.05 Hz	1479.12	50.45	9.95		-

The frequency at each step should be maintained for at least one minute and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3. The Droop should be determined from the measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be ± 0.05 Hz. The allowed tolerance for Active Power output measurement shall be $\pm 10\%$ of the required change in Active Power.

The resulting overall tolerance range for a nominal 10% Droop is +2.8% and – 1.5%, ie a Droop less than 12.8% and greater than 8.5%.

Annex to 6166265.01AOC

10. Power output with falling frequency test (For PV Inverter):						
This test should be carried out in accordance with A.1.2.7.						
Model: STS-3KTL-S						
Test sequence	Measured Active Power Output (W)	Frequency (Hz)	Primary power sou	rce		
Test a) 50 Hz ± 0.01 Hz	3019.72	50.00	Photovoltaic array	simulator		
Test b) Point between 49.5 Hz and 49.6 Hz	3018.62	49.50	Photovoltaic array	simulator		
Test c) Point between 47.5 Hz and 47.6 Hz	3017.03	47.51	Photovoltaic array	simulator		
	3017.03	47.51	Photovoltaic array	simulato		

NOTE:

The operating point in Test (b) and (c) shall be maintained for at least 5 minutes

The test is regarded as passed if:

• the Micro-generator does not disconnect from the network at the operating points a) to c) when the network frequency is changed and

• the Micro-generator does not reduce output energy at point b) and

• the power reduction at point c) is less than or equal to the allowed power reduction according to paragraph 9.4.2 (Figure 3).

The following data shall be documented:

• variation of the network frequency with time;

• the measured Active Power with time.

12. Re-connection timer

Model: STS-3KTL-S

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the **Micro-generating Plant** does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

Time delay setting	Measured delay	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1.				
60 s	90.824 s	At 1.16 pu (266.2 V)	At 0.78 pu (180.0 V)	At 47.4 Hz	At 52.1 Hz	
Confirmation that the Micro-		No	No	No	No	
generator does	generator does not re-connect.		Reconnection	Reconnection	Reconnection	
Recover to norm range after confi connection		Yes	Yes	Yes	Yes	
Confirmation that the Power Generating Module shall reconnect		Reconnection after 88.235 s	Reconnection after 90.824 s	Reconnection after 88.706 s	Reconnection after 88.471 s	

13. Fault level contribution:

These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). Please complete each entry, even if the fault contribution is zero.

Model: STS-3KTL-S

For machines with electro-magnetic output			For Inverter output		
Parameter	Symbol	Value	Time after fault	Volts	Amps
Peak Short Circuit current	İ _p	N/A	20ms	49.9	17.4
Initial Value of aperiodic current	A	N/A	100ms	49.7	17.9
Initial symmetrical short-circuit current*	I _k	N/A	250ms	48.4	0.766
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	48.3	0.754
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0.14	In seconds

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

14. Logic interface (input port)	
Confirm that an input port is provided and can be used to reduce the Active Power output to zero	Yes
Provide high level description of logic interface, e.g. details in 9.4.3 such as AC or DC signal (the additional comments box below can be used)	Yes
15. Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected).	
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	Yes
16. Cyber security	
Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7.	Yes, Manufacturer's declaration provided.
Additional comments.	
To short or open pin1 and pin2 of logic interface port 3 (RS485 port) to control the inverter shutdown active power of output. A logic interface is provided that can be operated by an or contactor. Users can install by themselves. Users install the switch connected to pin2 a RS485 port and just need control the switch signal causing the switch to open or short. W closed, the inverter will operate normally. When the switch is opened, the inverter will cea active power within 5 seconds. The signal from the inverter that is being switched is DC (n 3.3V).	external switch and pin3 of /hen the switch is ase to export
Port 1 Port 2	
1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 3 1 1 2 1 3 3 1 1 2 1 3 3 1 1 2 1 3 3 1 1 2 1 3 3 1 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td></td>	